首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2121篇
  免费   635篇
  国内免费   286篇
化学   1054篇
晶体学   22篇
力学   75篇
综合类   31篇
数学   275篇
物理学   1585篇
  2024年   5篇
  2023年   27篇
  2022年   60篇
  2021年   47篇
  2020年   59篇
  2019年   55篇
  2018年   76篇
  2017年   99篇
  2016年   91篇
  2015年   102篇
  2014年   187篇
  2013年   149篇
  2012年   185篇
  2011年   216篇
  2010年   173篇
  2009年   160篇
  2008年   172篇
  2007年   175篇
  2006年   141篇
  2005年   147篇
  2004年   105篇
  2003年   106篇
  2002年   63篇
  2001年   62篇
  2000年   43篇
  1999年   38篇
  1998年   39篇
  1997年   43篇
  1996年   35篇
  1995年   40篇
  1994年   26篇
  1993年   15篇
  1992年   24篇
  1991年   14篇
  1990年   11篇
  1989年   10篇
  1988年   7篇
  1987年   11篇
  1986年   8篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
排序方式: 共有3042条查询结果,搜索用时 29 毫秒
51.
高效液相色谱法测定化妆品中10种限用物质   总被引:1,自引:0,他引:1  
建立了乙腈超声提取、高效液相色谱/二极管阵列检测快速测定化妆品中的氢醌、水杨酸、苯酚、苯氧乙醇、对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯、双氯酚、三氯生10种限用物质含量的分析方法.对提取方法、液相色谱条件和检测条件进行了优化,10种限用物质标准溶液的线性范围为0.01~0.1g/L,50...  相似文献   
52.
将阵列感光的光纤光谱仪与二维电移平台结合,完成多波长薄层反射扫描定量,提供二阶张量数据输出.设计的仪器采取“弓”形二维移动扫描,探头与薄层板间距2mm,能在200ms积分时间内同时获取紫外—近红外2048个波长响应值,利用Kubelka-Munk函数积分值定量,提高了薄层扫描定量的线性度和准确度,检出范围覆盖纳克到毫克...  相似文献   
53.
张胜寒  梁可心  檀玉 《物理化学学报》2011,27(11):2726-2732
采用电化学阴极还原和阳极氧化法,制备了还原态铈和氧化态铈改性的TiO2纳米管阵列,通过扫描电子显微镜(SEM)和X射线衍射(XRD)表征样品形貌和晶相,得出还原态铈以单质铈纳米纤维形式存在于TiO2纳米管内及表面,单质铈改性的TiO2纳米管经阳极氧化后,以CeO2和单质Ce形式共存.测定样品的光电流响应并计算样品的能带宽度.结果表明:单质铈改性的TiO2纳米管阵列在可见光区光电流响应较TiO2纳米管增强,单质铈添加存在最佳值,在10 mmol·L-1溶液中制备的单质铈改性的TiO2纳米管阵列光电流响应最强,能带宽度E9减少到2.88 eV,并且随着单质铈含量的增加,载流子浓度增大,且平带电位向负向移动.单质铈改性的样品经阳极氧化后,样品在紫外光区和可见光区光电流响应都增强,但其在可见光区的响应强度要小于单质铈改性的TiO2纳米管在可见光区的响应强度.  相似文献   
54.
The ordered assembly of molecules within a specific space of nanoscale, such as a surface, holds great promise in advanced micro-/nanostructure fabrication for various applications. Herein, we demonstrate the evanescent wave (EW)-guided organization of small molecules into a long-range ordered nanowire (NW) array. Experiment and simulation revealed that the orientation and periodicity of the NW array were feasibly regulated by altering the propagation direction and the wavelength of EW. The generality of this approach was demonstrated by using different molecule precursors. While existing studies on EW often took advantages of its near-field property for optical sensing, this work demonstrated the photochemical power of EW in the guided-assembly of small molecules for the first time. It also provides an enlightening avenue to periodic structure with fluorescence, promising for super-resolution microscopy and important devices applicable to optical and bio-related fields.  相似文献   
55.
ABSTRACT

A short-focus microlens array using dielectric layer and inhomogeneous electric field over a homogeneous nematic liquid crystal (LC) layer is proposed. The top substrate has a planar indium tin oxide (ITO) electrode which is coated on the inner surface. The bottom substrate has strip ITO electrodes which are embedded in the dielectric layers. The inhomogeneous electric field generates a required gradient refractive index profile within the LC layer which, in turn, causes the focusing effect. Due to the thinner LC layer (15 μm), the spherical aberration should be negligible. Moreover, the fabrication process of the proposed microlens array can be easily carried out because of the layer-by-layer configuration. The simulation results show that the focal length of the LC microlens can be continuously tuned from infinity to 0.988 mm with the change of applied voltage.  相似文献   
56.
ABSTRACT

We propose an adaptive nematic liquid crystal (LC) lens array using a dielectric layer with low dielectric constant as resistive layer. With the resistive layer and periodic-arranged iridium tin oxide (ITO) electrodes, the vertical electric field across the LC layer varies linearly over the lens aperture is obtained in the voltage-on state. As a result, a centrosymmetric gradient refractive index profile within the LC layer is generated, which causes the focusing behaviour. As a result of the optimisation, a thin cell gap which greatly reduces the switching time of the LC lens array can be achieved in our design. The main advantages of the proposed LC lens array are in the comparatively low operating voltage, the flat substrate surface, the simple electrodes, and the uniform LC cell gap. The simulation results show that the focal length of the LC lens array can be tuned continuously from infinity to 3.99 mm by changing the applied voltage.  相似文献   
57.
A human brain is composed of a large number of interconnected neurons forming a neural network. To study the functional mechanism of the neural network, it is necessary to record the activity of individual neurons over a large area simultaneously. Brain-computer interface (BCI) refers to the connection established between the human/animal brain and computers/other electronic devices, which enables direct interaction between the brain and external devices. It plays an important role in understanding, protecting, and simulating the brain, especially in helping patients with neurological disorders to restore their impaired motor and sensory functions. Neural electrodes are electrophysiological devices that form the core of BCI, which convert neuronal electrical signals (carried by ions) into general electrical signals (carried by electrons). They can record or interfere with the state of neural activity. The Utah Electrode Array (UEA) designed by the University of Utah is a mainstream neural electrode fabricated by bulk micromachining. Its unique three-dimensional needle-like structure enables each electrode to obtain high spatiotemporal resolution and good insulation between each other. After implantation, the tip of each electrode affects only a small group of neurons around it even allowing to record the action potential of a single neuron. The availability of a large number of electrodes, high quality of signals, and long service life has made UEA the first choice for collecting neuronal signals. Moreover, UEA is the only implantable neural electrode that can record signals in the human cerebral cortex. This article mainly serves as an introduction to the construction, manufacturing process, and functioning of UEA, with a focus on the research progress in fabricating high-density electrode arrays, wireless neural interfaces, and optrode arrays using silicon, glass, and metal as that material of construction. We also discuss the surface modification techniques that can be used to reduce the electrode impedance, minimize the rejection by brain tissue, and improve the corrosion resistance of the electrode. In addition, we summarize the clinical applications where patients can control external devices and get sensory feedback by implanting UEA. Furthermore, we discuss the challenges faced by existing electrodes such as the difficulty in increasing electrode density, poor response of integrated wireless neural interface, and the problems of biocompatibility. To achieve stability and durability of the electrode, advancements in both material science and manufacturing technology are required. We hope that this review can broaden the scope of ideas for the development of UEA. The realization of a fully implantable neural microsystem can contribute to an improved understanding of the functional mechanisms of the neural network and treatment of neurological diseases.  相似文献   
58.
A powerful new strategy for the fabrication of high‐density RNA arrays is described. A high‐density DNA array is fabricated by standard photolithographic methods, the surface‐bound DNA molecules are enzymatically copied into their RNA complements from a surface‐bound RNA primer, and the DNA templates are enzymatically destroyed, leaving behind the desired RNA array. The strategy is compatible with 2′‐fluoro‐modified (2′F) ribonucleoside triphosphates (rNTPs), which may be included in the polymerase extension reaction to impart nuclease resistance and other desirable characteristics to the synthesized RNAs. The use and fidelity of the arrays are explored with DNA hybridization, DNAzyme cleavage, and nuclease digestion experiments.  相似文献   
59.
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one in adhesives. The procedure involves a three‐phase hollow‐fiber liquid‐phase microextraction using a semipermeable polypropylene membrane, which contained 1‐octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF‐MS, where the identification of the compounds and the quantification values were confirmed.  相似文献   
60.
A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high‐performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3‐glucoside, cyanidin 3‐rutinoside, petunidin 3‐glucoside, petunidin 3‐rutinoside, and malvidin 3‐rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high‐performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high‐performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10–5500 mg/L. The correlation coefficients (r2) all exceeded 0.9972, and the limits of detection were in the range of 1–4 mg/L at a signal‐to‐noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4–103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号